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This paper presents an analysis and classification of flows. Hyperbolic
and elliptic-hyperbolic types of flow are examined. It is shown that in
flow past corners in the hyperbolic regime the turning of the flow occurs
successively through two compression shocks or expansion waves. A method
for calculating such flows is given. It is shown that elliptical-hyper-
bolic flows may be decomposed into an elliptical part which dies out at
infinity and a hyperbolic part which does not. The character of flow
past currents is investigated. It is shown that under the influence of a
magnetic field component which is perpendicular to the flow, the per-
turbations induced by the currents are not shielded by the flow. In an
ideal infinitely conducting fluid, in the presence of a small perpen-
dicular field, a magnetic boundary layer develops around currents.

1. Equations and characteristics. As is well knom [1], the
equations of magnetohydrodynamics for an ideal gas with infinite electric-
al conductivity have the form

dvEV) =0, (VV)V=—"2_ L HxrotH
P (1.1)
divH=0, rot(VxH)=0, Vgrad(;‘s)=0

Here p is the density, p is the pressure, V is the velocity, and H is
the magnetic field.

In order to obtain more simple and descriptive results we restrict

ourselves to linear theory. After linearization, the system of equations

(1.1) takes the form
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where the symbols without indices denote small perturbations on the
values of the corresponding quantities at infinity, denoted by symbols
with index 0.

The inclination of the characteristics of Equations (1.1) to the
velocity vector is determined by the equations

¥4 [(M? — N.3) (1 — M?) + M2N 2] + 253NN, -+
4y M — N2 (1 — M%) — N2 (1 — M?)] + 2NNy — N,2 = 0,(1.3)

g5 i
(2= e ) )

Here y° is the tangent of the angle of inclination of a characteristic
to the velocity vector, ¥ is the Mach number. This equation may be de-
rived, as is done in the theory of differential equations, by setting up
the kinematic and dynamic conditions of compatibility [2]. But it may
be obtained more simply if, in the equation which determines the velo-
city of propagation of magnetohydrodynamic waves (cf., for instance,
Equation 52,12 in[11]), the latter is equated to the velocity component
which is normal to the wave front. In view of the complexity of Equation
(1.3) it is difficult to see the behavior of its roots. A more descript-
ive presentation of the characteristics of Equations (1.1) may be obtain-
ed if they are considered as shock waves of vanishing strength. Inasmuch
as the inclination of shock waves of vanishing strength is known [ 3 ]
for the case where the vectors H and V are parallel, the inclination of
these waves for arbitrary directions of H and V may be obtained by
choosing a corresponding moving system of coordinates. From Fig. 1 it
may be seen that the solutions of Equation (1.3) may be presented in the
following parametric form:
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tgo, +tga _ M, tg o,

lgo=y= 1—tgo,tga ’ " cosa tgo,+tga (14)
where ., M2 — N2 (1 — M) . H?
tghoy = M= D (MF—N = Imxp

Given the values of M| in those regions in which tg o) exists, it is
easy to trace the behavior of the characteristics. Figs. 2 and 3 show
the variation of M and tg o with Hu corresponding to large and small

S
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FIG. 2.

values of tg @, for N< 1. For N> 1 an analogous picture is obtained.
For small values of a there are two hyperbolic and two elliptic-hyper-
bolic regimes; for large a there is one elliptic-hyperbolic (for small
M) and one hyperbolic region (Fig. 4). In the elliptic-hyperbolic
regimes there are two characteristics, and in the hyperbolic ones there
are four. As in [3 ] we shall call the first hyperbolic region quasi-
hyperbolic, and the second one fully hyperbolic, or simply hyperbolic.

Along the characteristics the following conditions are satisfied:

’ ’ ! ’ 1 ’ n Hx’
W' NN+ MANY? — Ny?) o — (N + MENNyy™ — y NNy 55 —

— [y (M2 — N3 + y*NoNy (1 + M) - —
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~[Y* + yONaly + Y Nalo} 2= 0 (1.5)

Here the primes denote differentiation with respect to x, along a
characteristic.
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2. Flov in the hyperbolic region. In[3] flows with H || V,
are analyzed. Let us investigate the other limiting case, where H' Vo.
Expression (1.5) takes the form

’ H 4 ’ ’
2 ot ’ — oy _ X vy __ P 2_

N2 (M2 — 1) 7 +y' N2 (1 — M%) Y SMZVo -y 20 (2.1)
For this case, Equation (1.3) has the roots

(2.2)

n _ —[M3— N3 (1 — M%) + VM= Ni({— MY + 4NM° [(1 — M%) + NV°
Yr.e= 2(( — M%) + NI M®

Here N = N_ , since H,|= = 0, and the index 1 corresponds to the
smaller root, index 2 to the larger one.
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Por A || V, it was possible to speak, just as in ordinary hydrodynamics,
about the flow about a body of given form, independently of the field in-
side the body. This is explained by the fact that the field at the wall
of the body is always parallel to the wall and is independent of the
field inside the body. The field inside the body simply determines the
jump in field at the surface. If V, ¢ H, then uﬂy ~ v = Vbﬂyo £ 0,
throughout the whole flow field.

It follows that on the surface of the body in the flow, "tﬂh =
Voﬂ 0 # 0, i.e. the normal component of the field is different from zero.
In {his case the field at the wall cannot have a discontinuity since then
a surface current would develop, on which there would be a force tangent
to the body, which is impossible in an ideal fluid. Therefore, it is not
possible to investigate the problem of flow over a body of given form in-
dependently of the development of the field inside the body.

FI1G. 4.

Let us investigate, for example, the flow about a thin profile at
zero angle of attack. Inside the body there are no sources of magnetic
field. Therefore, during the passage of the body the field can change by
an amount which is of the order of the square of the body thickness. It
follows that, to the accuracy being considered, H, = H,_ and H = H
(the indices plus and minus refer, respectively, to upper and lower sur-
faces of the profile). From this condition and the second last equation
of (1.2) it follows that u,_ = u_ . In addition, the profile shape is
given, that is, V; ==V = f(x).

For a = 1/2n the hyperbolic type of flow occurs for values of M >
v 1+ N2, In this case, disturbances cannot penetrate upstream. There-
fore, Equations (2.1) may be integrated along the characteristics which
go upstream, since in front -of the body all disturbances are zero. This

gives us four relations, for six unknowns H,,,u, and p .

With the conditions H ,=H_ and u_ = u_ there are enough equations

to determine u , p, and H_ . Then H} is found from the second last
equation of (1.2).

Solving this system for the problem under consideration, we obtain
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’ ’ M2 ’ ’
%=y1’yz’m(|yxl—lyz D%, Hypy=H, =0
A
}—;’f =XM2T:;—:’ p_‘::pd_ (2.3)

B =y " (4 — M2y — gy’ [ (1 — M%)

From (1.4), when tg a » « we have y” = — ctg| oy, and ¥ = M" tg o).
From (2.2) and Fig. 3 it is easy to see that the small root y,  corres-
ponds to values of M} in the interval N/ y 1+ Mg M| £ N<1 for
N< 1, and in the interval N/ v 1 + N2 < My < 1 forNI> 1. The larger
root y,” corresponds to the value My> 1 for N< 1, and M“> N for N> 1,
Therefore, yl’zﬂz < 1 and yz’zﬂz > 1. Consequently, A, > 0.

Thus, for v, > 0 the pressure on the wall p, > 0 and the velocity
u < 0, as in ordinary gas dynamics. However, where in ordinary gas
dynamics the pressure increase occurs through a single compression shock,
e.g. on a wedge, here it occurs through two successive shocks. In fact,
let us examine any point between the characteristics issuing downstream
from the vertex of the wedge (Fig. 5a). It is evident that through such
a point there pass three characteristics from upstream infinity and one
(with inclination + y,”) from the body surface. Integrating (2.1) along
these characteristics we will obtain four relations for determining four
quantities u, v, p and H_ at the point in question.

Solving these equations we find

v _nt(— My, P _ |yl — My v lys|
04 A,y ’ Py A ' Uy fva" | —btn’ |

From this it may be seen that for v, > 0, v > 0 and p > 0, Also, v/v+< 1
and p/p, < 1. Thus, the flow is compressed first by the first shock and
then by the second. For N »+ 0 the angle of inclination and stremgth of
the second shock tend toward zero, while the first shock becomes the
shock of ordinary gas dynamics.

We note that at the first shock the flow is slowed down (u < 0) while
at the second one it is accelerated (u/u+ > 1). In fact, to the shock
with inclination y,” there corresponds a value of ¥ > 1, and to the
shock with inclination y,” a value of H" between N/'y/ 1 + N2and N< 1.
In the first case, as shown in [3 ] the end of the velocity vector down-
stream of a shock with inclination 4 corresponding to 0,, appears in
the first quadrant, while in the second case it appears in the second
quadrant (Fig. 6). In passing through a real shock with inclination o, ,,
the end of the velocity vector appears, correspondingly in quadrants 1
and 2. In the first case the velocity decreases, in the second case in-
creases.
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We shall also investigate the flow over a flat plate at angle of

attack (Fig. 5b). In this case, v, = v_. Again, proceeding along

characteristics from upstream infinity we obtain

uy=u_=0, pr= —p_, Hyy=H, =0
Py xAuM, Heyy Myl Hyd [y’ [—lw') 2y (2.4)
po AW, H, — Ap Vo ’

Analogously to the foregoing, we have at a point between the charac-
teristics,

v Iw [ A=My%)  p P —My?) w My

1)+ A]_ ’ p+ Az v+ 1V2A1

Thus, in this case also, for v, > 0 the compression occurs through
two shocks. But we note that for a given flow deflection in the two
cases we have considered the shock systems will be different. It is
evident that for v, > 0 the flow deflection occurs by means of expansion

waves. For N + 0 the second shock (or expansion wave) lies along the
body.
/. '
b .
K

FIG. 5. FIG. 6.

3. Flow over currents. Up to now it was assumed that there were
no currents in the body. We shall now investigate the flow around a body
containing currents perpendicular to the plane of the flow.

For a simple example we shall investigate a flat plate at zero angle

of attack (the conducting layer is assumed to be isolated from the flow).
Let

Hxn=0' HVO: HO
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In this case the following conditions must be fulfilled on the surface
of the body:
Hy=H,, v=v_=0, uy=u_, Hy—H, =f(z)

where the function f(x) is determined by the distribution of current
along the plate. Proceeding along the characteristics from upstream in-
finity, as in Section 2, we find

u
H+=—H_=%/($), Vi;—_lylllyzlA2 H,
3.1)
x poN? (1 — M3y 81— Miys(ya' | —| w1’ ) Hat

. Hy

P+=p-=—

We assume for simplicity that f(x) = const and investigate a point
between the characteristics which proceed downstream from the nose of
the plate (Fig. 7). Proceeding to this point along the three character-
istics from infinity and along one characteristic from the body, we ob-
tain

¥ it — My, P lv]

u, A, ’ Py 'l —lwl V.
By _ _wd— My Hee
H,y Ay H, ; ’ﬁz—_

Fong > 0 we have p_ > 0, u, < 0, and
in add1t10n,p>0and p/p+> 1.

Therefore, the flow first goes through a
shock in which the gas is strongly compressed, FI1e. 7.
after which it is expanded a certain amount by
an expansion wave. For N » 0 this expansion
wave lies along the body, going over into a tangential discontinuity of
magnetic field, and in the region between the shock and the expansion
wave the disturbance approaches zero. Thus, the flow fully screens the
currents only in the absence of a transverse magnetic field. In all
other cases, disturbances created by the currents penetrate into the
flow.

Evidently, for H_, < O there is first an expansion wave, followed by
a shock wave.

For large but finite conductivity, the shock (or expansion wave) be-
comes a certain layer which, for N+ 0, approaches the body to become a
magnetic boundary layer of the type investigated in [4].

For M<y 1+ N? and Hy # 0 disturbances penetrate into all flows.
However, for small values of H”, in an ideal infinitely conducting
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fluid, there appears around the plate a magnetic boundary layer, in which
the magnetic field changes from a value at the wall (determined by the
flow) to practically zero (Fig. 8). This layer is similar to the one in-
vestigated in [5]1. In order to clarify in the simplest possible manner
the phenomena obtained here, we shall investigate the flow over a plate
with current, in an infinitely conducting incompressible fluid (Fig. 8).*
The thickness of the layer is proportional to Hy 0 Taking u and H, to be

PIG. 8.

quantities of order unity, and making the usual assumptions of boundary
layer theory, we find from one of the equations of motion that across
the layer
H.2
p+ 5.~ = const

The other equation of motion becomes

du du 1 oH oH,
WG + o= (He ) @-2)
In addition, the following equations must be satisfied:
3 ™ oH oH
a—: + v 0, e + —# =0, uHy— vHy= Hyu, (3.3)

The first two equations of (3.3) make it possible to introduce the
functions ¢ and y by means of the relations

u=0¢/0y, v=—0¢/dr, H,=adydy, Hy=—adylox (3.4)

Differentiating the last equation of (3.3) and making use of the other
two equations of (3.3) we obtain

oH. oH oH oH,

iz v ou a x
ua—;‘+va—y”=Hxa—5+Hyb—y, H,$+H,,a-';-=u—a? +v =% (3.5

In Equations (3.2) and (3.5) it is convenient to change to the vari-
ables ¢ and y. We have

* Here we do not assume the disturbance to be small.
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1 oH, du oH ou
R Ta=" w Ta~l (3.6)
BHV o
R -+ Fri 0 (3.7)

The system (3.6) evidently has two families of characteristics
¥V 4mp +x = const. Along these characteristics the relations

Vbrpuw'+-H,' =0 (3.8)

are satisfied. The characteristics corresponding to the upper sign we
shall call characteristics of the first family, and those with the lower
sign the second family.

Equation (3.7) makes possible a function ® (x, ¢) such that
2 = 00y, H,= — o®/o¢
Therefore, the last of equations (3.3) may be put in the form
%‘% +H2® —  Hu, (3.9)

:t_a'; -
The variables ¥ and ¥ are connected with the variables x and y by the
relations

u

1 1
dz = Houe (Hdp — udy), dy ~Hoam (Hydp — vdy) (3 10)
As an example, let us investigate the flow over a flat plate with a
current distributed according tothe relation H, = kx = OO .

In the y, Y plane the problem 1is formulated as follows:

Hx+=k1‘, 2=0 for¢=20
At infinity, along characteristics of the first family,

Hx=0' U = Uy for QIJ—)OO

Along characteristics of the first family we have
Vixpu + H = uo Vanp (3.11)

It follows that on the body u(x, 0) = uy — H, . /v 47p. Then, from
(3.10), we have

H, voVinp _ ugVmp (1 — eA%) ( k )
== (1—

dy = ————————=—dz, oOr A=
X kx — uo Vénp * H u.“oy4"P
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It is easy to see that uw and H_ are constant along characteristics of
the second family A = \/ 4mp ¢ + }X = const for A < 0, and that u = u, and
H’ = 0 for A > 0.

Thus, for A < O,
u = uget?, H_=uoVimp (1 —eA?) (3.12)

Putting these expressions in Expression (3.9) and integrating, we ob-
tain

°=ZTZ_;T 1n(1—ie——'A,\4’"’¢) (3.13)

and

Hopg M —AVimY Age A
VS U A YImp e A T TV A Yimp AN

Putting (3.14) into (3.10) with A = 0 we find a line which is the edge
of the boundary layer in the physical plane:

H kx
. Ve 1 1 — —_—— )
y=—"g 1 ( uo Vanp

For kx » “o‘V 4np we have y » . This point corresponds to a separation
of the flow, [a/u, v 4np /k, 0) = 0].

We note that the force acting on the current flowing in the body, in
the presence of the flow of an infinitely conducting fluid or gas, is
different from the force which acts on the same current in the absence
of flow. The resistance created by a transverse magnetic field is similar,
in the well-known sense, to a resistance which is dependent on viscosity.

4. Flows in the elliptic-hyperbolic regime. According to the
classification given in Section 1, we call those flows elliptic-hyper-
bolic in which only two characteristics appear. We shall investigate this
flow in detail for a = 1/2 n. From Fig. 3 and Equation (2.2) it follows
that at every point of the flow there are two families of characteristics

corresponding to ¢ > 0 and 0 < 0. Along the characteristics relations
(2.1) are satisfied.

We assume that (just as in the usual flows of elliptic type) all per-
turbations die out at infinity. Then two relations (2.1), satisfied along
the characteristics, allow p to be expressed in terms of u and H_ in
terms of v. Solving this system for given boundary conditions on the
velocity, we at the same time determine completely the distribution of
magnetic field, in particular, at the boundary of the body. It is clear
that values so obtained for the field at the boundary of the body can be
continuously joined with the magnetic field inside the body only for a
special choice of the boundary conditions on the velocities and the
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currents inside the body. In the general case, the condition for con-
tinuity of the field at the body boundary and the condition for the dying
out of the perturbations at infinity are not compatible. From this it
follows that, within the framework
of the linear theory being consider-
ed by us, the perturbations at in-
finity do not die out. In a nonlinear
approximation, naturally, all pertur-
bations die out at infinity. There-
fore, the fact that perturbations do
not die out along characteristics in
the linear theory indicates that in
the real flow the characteristics
must terminate somewhere in the flow.

In the case under consideration
they can run into shock waves. Indeed,
since the characteristics are shock
waves of vanishing strength, the
existence of characteristics points
to the existence of shock waves in
the flow regime being investigated.

From Fig. 3 it was seen that shock waves exist for all values of ¥
from zero to m =y 1+ N2,

Let us investigate which of two possible shock waves (directed up-
stream or downstream) can extend from the body. Here, just as in ordinary
gas dynamics, it is necessary to distinguish a wave leaving the body
from one coming into it. Let us assume that from some point on the upper
surface of the body (Fig. 9) a shock or an expansion wave goes upstream
at an inclination angle o. From Fig. 9 it may be seen that the waves
being considered correspond to values of the parameter M I falling in the
intervals

NV1I+N:<M;<N tor N<1u NVT+N<M;<1 ftor N>{.

For these values of the parameter, as shom in [3 ] for a flow with
a = 0, obtained from that examined above by the superposition of an
appropriate velocity downstream of the wave, two regimes are possible as
shom in Fig. 9. For that case, if the wave is a shock wave, the end of
the velocity vector behind the shock will lie in Quadrant 1, if the wave
is an expansion wave, it will lie in Quadrant 2. In the flow with g ==/2
the end of the velocity vector after the wave appears, correspondingly,
in Quadrants 1°. and 2’. From the flow schemes shown in Fig. 9 it is seen
that on the upper surface a wave directed upstream will be an incoming
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wave. On the other hand, on the lower surface, where the wave with the
inclination under consideration is directed downstream, the wave is an
outgoing one. Thus, in the flow being investigated only waves outgoing
downstream are possible. It follows that only characteristics which go
out from the body downstream can run into shock waves; along these
characteristics perturbations do not die out in the linear approximation;
along characteristics which go upstream the perturbations tend toward
zero.

In accordance with the analysis given, the following relations are
valid at an arbitrary point of the flow, according to Equatimn (2.1):

Lix;y)=F(0), Lz(z,y)=0 M=zzy/ly) (41
where H_ (2
L, (z; y) = N*(M?y,"*— 1) %,,—y) +lo [N (1 — My,%) —— g.; 2 +

|y’ B M v (“,“:y) _ P::;y) 9

and FO\) is a certain, so far unknown, function of A. The upper sign
corresponds to positive y,”- and the lower sign to negative (the body is
assumed to be near the axis y = 0). It is evident that FQ\) = 0 along
characteristics which do not go through the body, since one end of such
characteristics goes out to upstream infinity. With the help of (4.1) and
the last two equations of (1.2) it is possible to eliminate from Equa-
tions (1.2) either H*, H, pandp, or u, v, p and p. The result gives
two systems of equations” for u and v, and H’ and H y respectively:

W NT(A— My 0u | G VoF' (A

1-mpe e

e 5 25
ow MW v VP (M) 42
Gy MY — M) 9z Zlgy NP (I—Myy%) (4.2)
oH, oH,
% Ty =0
N— M- N (1 — M) Oy 0H:  HoF' () (4.3)
n'? oz 0y~ 2u?

It is easily verified that the operators on the left-hand sides of
these equations are of elliptic type for ¥ <y 1 + N? and of hyperbolic
type for ¥ > v 1+ N2, The solution of the systems (4.2) and (4.3) may
be represented in the form of a sum, the first terms of which ("1' vy,
H,,, H,)) are functions of A and satisfy a non-homogeneous system of
oréinary differential equations, while the second terms (u,, v,, B,,Hd.)
are functions of x and y and satisfy homogeneous systems of par\:ialzL b
differential equations, each one of which reduces to Laplace’s equation.
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Integrating the system of ordinary differential equations we find
Wy= K}_Fy U= KgF etc. (4-4)

The constants of integration are equal to zero, since on the charac-
teristics which do not pass through the body the functions u,;, v,, etc.
must be equal to zero.

The functions (4.4) represent the hyperbolic part of the solution,
which does not die out at infinity. The functions u,, v,, etc. are the
elliptic part of the solution, which dies out at infinity. The possibil-
ity of separating the solution into a hyperbolic and an elliptic part
justifies the naming of these flows elliptic-hyperbolic.

On the boundary of a body (a thin one, for simplicity) one has twelve

unknown functions, F*, Up.» Vay, H Hz and p,. These functions are
connected by the four relations (4. ﬁ the two relations uz*/Vo--H /Ho'

obtained from the second last equation of (1.2), and the four comhtmns
H =H_, Hy_’_ = Hy and v, = f, (x) and v_=f(x). With the help of these
re at.lons it is possible to fmd two functions G1 o(H, , %y’ Hy ) Ug, ”z) =0,

which make it possible to formulate the boundary value problem for the

.

%

FIG. 10.

two Laplace equations obtained from (4.2) and (4.3). For flows with sym-
metry with respect to the axis y = 0 these functions are separable (i.e.
G,(ay, v,) = 0 and Gz(sz, Hfz) = 0), and the problem for each Laplace

equation is solved separately.

A sketch of the shock waves which appear at the body, and in which the
hyperbolic part of the solution has a discontinuity, is shown in Fig.10.
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